## Kill a Watt

**Construction and Energy Summit** 

#### Kill A Watt Meter



#### 1875 Watt Hair Dryer



## Voltage, no load



## Volt Drop

Voltage no load,



**Unit Turned On** 



#### Amp

Amps on Slow Speed

Amps on High Speed



#### Watt

Watts on Low



Watts on High



### Hertz (Important to Industrial Companies)



### KWH (Electricity used over Time)



#### KWH = cost

Step 1. Convert watts to kilowatts

Watts  $\div$  1000 = KW

Example 1875 watts  $\div$  1,000 = 1.875 KW

Step 2. kilowatts times the number of hours in operation (KWh)

KW x time

 $1.875 \times 2 \text{ hours} = 3.75 \text{KWh}$ 

Step 3. kilowatt hours times price per kilowatt hour

KWh x \$.08

 $3.75 \times \$.08 = \$.30$ 

#### Using the Meter for Cost

Leave the meter plugged in for a day or week, then just read the number in the KWH window and multiply it by \$.08

Best for calculating cost for appliances like:

Refrigerator

Freezer

Microwave oven

Clothes washer

Television



# What do you think???